SklearnModel¶
- class SklearnModel(sklearn_model_type, embedding_id, symbol_prefix=None, num_pca_dims=None, **sklearn_model_kwargs)[source]¶
Bases:
ModelMixinBase class for sklearn-style models.
- Parameters:
sklearn_model_type (
type) – the class that admits basic sklearn interface.embedding_id (
str) – the ID of the embedding to use for perturbations.symbol_prefix (
Optional[str]) – prefix to add on perturbation vocabulary keysperturb_num_pca_dims – optionally apply PCA to perturbation embeddings.
**sklearn_model_kwargs – parameters to use to initialize sklearn model.
- predict(data_x, batch_size=None)[source]¶
Predict values for the given data.
- Parameters:
data_x (
PlibData[DataFrame]) – Data without labels i.e. without the “values” column.batch_size (
Optional[int]) – Not supported for Sklearn models.
- Return type:
ndarray[Any,dtype[TypeVar(_ScalarType_co, bound=generic, covariant=True)]]- Returns:
Value predictions.