API

Data

Basic routines

list_contexts()

List registered contexts.

describe_context(context_id)

Describe specified context.

register_context(context_class)

Register new context to the collection.

load_anndata(context_id[, hgnc_renaming])

Load data from given context as AnnData.

load_plibdata(contexts_ids[, ...])

Load data from given context(s) as PlibData.

split_plibdata_2fold(pdata, context_ids)

Split data to training and validation.

split_plibdata_3fold(pdata, context_ids)

Split data to training, validation, and test.

Data structures

PlibData

Data structure for hosting perturb-lib data.

InMemoryPlibData

In-memory variant of PlibData.

OnDiskPlibData

Class for handling on-disk data.

Embeddings

list_embeddings()

Get IDs of registered embeddings.

describe_embedding(embedding_id)

Describe specified embedding.

register_embedding(embedding_class)

Register new embedding to the collection.

load_embedding(embedding_id[, ...])

Load specified embedding as DataFrame.

Models

Basic routines

list_models()

Get IDs of registered models.

describe_model(model_id)

Describe specified model.

register_model(model_class)

Register new model to the collection.

load_model(model_id[, model_args])

Load specified model.

save_trained_model(model, path_to_model[, ...])

Load specified model.

load_trained_model(path_to_model)

Load model on the specified path.

Base models

ModelMixin

Mixin for perturbation models.

SklearnModel

Base class for sklearn-style models.

Evaluation

Basis routines

list_evaluators()

Get IDs of registered evaluators.

describe_evaluator(evaluator_id)

Describe specified evaluator.

register_evaluator(evaluator_class)

Register new evaluator to the collection.

load_evaluator(evaluator_id)

Load specified evaluator.

Mixin

PlibEvaluatorMixin

Mixin for all the Perturb-lib evaluators.

Collections

Models

baselines.NoPerturb

Replaces any perturbation symbols with a no-perturbation symbol.

baselines.GlobalMean

Computes mean value from the training data and then uses it to make predictions.

baselines.ReadoutMean

Predicts mean readout value without taking perturbation information into account.

baselines.Catboost

CatBoostRegressor used on top of predefined embeddings.

lpm.LPM

Large perturbation model.

Evaluators

standard_ones.RMSE

Root-mean-square error (RMSE).

standard_ones.MAE

Mean absolute error (MAE).

standard_ones.R2

R2 score function.

standard_ones.Pearson

Pearson correlation coefficient.